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1 The book

Buy Mathew Crawford’s Introduction to Number Theory at www.artofproblemsolving.com.

2 Integers: The Basics

Integers are numbers that have no fractional part. The set of all integers is often
denoted Z.

Whole numbers are non-negative integers. The set of all whole numbers is often
denoted W.

Natural numbers are positive integers. The set of all natural numbers is often denoted
N.

In number theory, we are primarity concerned with natural numbers and equations
whose only solutions we care about are natural numbers (“Diophantine” equations).
This restriction can sometimes be aggravating. For example, finding integral solu-
tions to x + y = 4171 is easy while finding integral solutions to xy = 4171 is an
entirely different matter. The additive equation has an infinite number of solutions,
and each integral value of x (or y) will give a corresponding integer for y (or x)
that will solve the equation. The multiplicative equation, on the other hand, has
exactly 8 pairs (x, y) that will satisfy it: (1, 4171), (43, 97), (97, 43), (4171, 1), and
their negatives. The reason is that the prime factorization of 4171 is 43 ∗ 97. Prime
factorization is an extremely important topic of number theory, but before we can
discuss it, we must define a few things.
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3 Some definitions

3.1 Divisibility

Formally, x divides y iff (”if and only if”) y
x

is an integer, and x does not divide y iff
y
x

is not an integer. Symbolically, we may write

x | y ↔ y

x
∈ Z

and
x - y ↔ y

x
6∈ Z (1)

The vertical bar means “divides,” the double-headed arrow means “iff,” ∈ means “is
an element of,” and 6∈ means “is not an element of.”

Divisibility is transitive but not commutative, and associativity does not apply.

3.2 Divisor

x is a divisor of y iff x | y - that is, iff y
x
∈ Z.

3.3 Multiple

y is a multiple of x iff x is a divisor of y.

3.4 Composites

A composite number is a number that has positive divisors other than 1 and itself.
The first ten composites are 4, 6, 8, 9, 10, 12, 14, 15, 18, and 20.

4 Prime numbers

A prime number p (an element of P) is a number that has no positive divisors except
for 1 and itself. The first ten are 2, 3, 5, 7, 11, 13, 17, 19, 23, and 29. 1 is generally
not considered prime.
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4.1 The Sieve of Eratosthenes

Eratosthenes was an ancient Egyptian mathematician who is most well-known today
for calculating the circumference of the Earth. However, it is his namesake “sieve”
- a method of making a list of primes - that interests us. The sieve is generated as
follows.

1. List as many integers as you want, starting with 2 and not skipping any.

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 10
21 22 23 24 25 26 27 28 29 10
31 32 33 34 35 36 37 38 39 10
41 42 43 44 45 46 47 48 49 10
51 52 53 54 55 56 57 58 59 10
61 62 63 64 65 66 67 68 69 10
71 72 73 74 75 76 77 78 79 10
81 82 83 84 85 86 87 88 89 10
91 92 93 94 95 96 97 98 99 100

2. Find the smallest unmarked number. Mark it somehow; here, we will box it.

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

3. Mark all multiples of the number in a different way. We will italicize.
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2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100

4. Repeat steps 2-4, unless there are no more unmarked numbers.

After finishing our list, we have

2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 86 87 88 89 90

91 92 93 94 95 96 97 98 99 100

The boxed items are primes; the italicized items are composites.

4.2 The number of primes

The following proof is due to Euclid, another ancient mathematician. It is a classic
example of proof by contradiction.

Let us suppose that there is a finite number of primes. Multiply them all together
to get a huge - but still finite - integer n. Note that n must be larger than all the
primes. Now let us consider the factors of n + 1. Then, since n + 1 > n > all primes,
n+1 must be composite. Hence there exists an prime p such that n+1

p
∈ Z. But note
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that n+1
p

= n
p

+ 1
p
. Since n is defined as the product of all primes, p must divide it -

hence, n
p
∈ Z, so, since 1

p
is clearly not an integer, n+1

p
is not an integer; hence, p does

not divide n + 1. But p was defined to be a factor of n + 1! By this contradiction,
we conclude that our assumption (that there is a finite number of primes) is wrong;
hence, there is an infinite number of primes.

QED/VIM

4.3 Primality testing

The most obvious way to determine whether a number is prime is to divide it by all
primes less than it; however, there is a better way. Since n√

n
=
√

n, we only need to

divide by primes up to
√

n.

There are many, many methods of determining primality that work a lot faster than
this - provided that the Riemann Hypothesis is true. However, that is a discussion
requiring some very advanced techniques that we cannot include here.

4.4 Prime factorization

The prime factorization of a number is the product of primes that yields the number.
The fact that each number has a unique prime factorization (aside from rearrange-
ments of factors) is called the fundamental theorem of arithmetic. When prime
factors are repeated, we usually combine them as a prime to a power, and we also
arrange these terms so that the bases increase from left to right. Hence, we would
usually write a factorization as

pa1
1 pa2

2 . . . pan
n (2)

with p1 < p2 < . . . < pn. For example, we would write the prime factorization of
2296458000 as 24 33 53 23 432.

5 LCM

The least common multiple of a pair of numbers. We usually write it as LCM(x, y).
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Let the numbers we are concerned with be a and b. The most obvious way to compute
LCM(a, b) is to multiply a by successively increasing integers, starting with 1, and
stopping when we have a number divisible by b. But there is a better way to do
this. Let the numbers we are concerned with be a and b. Find the largest power
of each prime factor of a that still divides a, find the corresponding powers for b,
and take the larger of the two powers. A more rigorous description of this method
follows:

5.1 Calculation

1. Find the prime factorization of each number. Express one as 2a13a25a3 ... and the
other as 2b13b25b3 ....

2. For all i, let ci = max(ai, bi).

3. The least common multiple is 2c13c25c3 ....

6 GCD

The greatest common d ivisor of two numbers. We usually write this as GCD(x, y).
There are two main methods to find this. The first is rather similar to our method
of finding the LCM; the second is surprisingly elegant.

6.1 Computation via factorization

1. Find the prime factorization of each number. Express one as 2a13a25a3 ... and the
other as 2b13b25b3 ....

2. For all i, let ci = min(ai, bi).

3. The greatest common divisor is 2c13c25c3 ....

6.2 Computation via the Euclidean Algorithm

We often want to find the GCD of numbers that would be very tedious to factorize.
Fortunately, there is another method we can use to compute the GCD. The Euclidean
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algorithm is based on the fact that GCD(a, b) = GCD(b, a−cb), and is implemented
as follows.

a = d0b + c0 (3)

b = d1c0 + c1 (4)

c0 = d2c1 + c2 (5)

c1 = d3c2 + c3 (6)

c2 = d4c3 + c4 (7)

...

ck−2 = dkck−1 + ck (8)

ck−1 = dk+1ck (9)

ck will be the GCD we seek.

An example: compute GCD(920,720).

920 = 1 · 720 + 200

720 = 3 · 200 + 120

200 = 1 · 120 + 80

120 = 1 · 80 + 40

80 = 2 · 40 + 0
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